Abstract:Tabular data plays a pivotal role in various fields, making it a popular format for data manipulation and exchange, particularly on the web. The interpretation, extraction, and processing of tabular information are invaluable for knowledge-intensive applications. Notably, significant efforts have been invested in annotating tabular data with ontologies and entities from background knowledge graphs, a process known as Semantic Table Interpretation (STI). STI automation aids in building knowledge graphs, enriching data, and enhancing web-based question answering. This survey aims to provide a comprehensive overview of the STI landscape. It starts by categorizing approaches using a taxonomy of 31 attributes, allowing for comparisons and evaluations. It also examines available tools, assessing them based on 12 criteria. Furthermore, the survey offers an in-depth analysis of the Gold Standards used for evaluating STI approaches. Finally, it provides practical guidance to help end-users choose the most suitable approach for their specific tasks while also discussing unresolved issues and suggesting potential future research directions.
Abstract:Tables are crucial containers of information, but understanding their meaning may be challenging. Indeed, recently, there has been a focus on Semantic Table Interpretation (STI), i.e., the task that involves the semantic annotation of tabular data to disambiguate their meaning. Over the years, there has been a surge in interest in data-driven approaches based on deep learning that have increasingly been combined with heuristic-based approaches. In the last period, the advent of Large Language Models (LLMs) has led to a new category of approaches for table annotation. The interest in this research field, characterised by multiple challenges, has led to a proliferation of approaches employing different techniques. However, these approaches have not been consistently evaluated on a common ground, making evaluation and comparison difficult. This work proposes an extensive evaluation of four state-of-the-art (SOTA) approaches - Alligator (formerly s-elBat), Dagobah, TURL, and TableLlama; the first two belong to the family of heuristic-based algorithms, while the others are respectively encoder-only and decoder-only LLMs. The primary objective is to measure the ability of these approaches to solve the entity disambiguation task, with the ultimate aim of charting new research paths in the field.