Abstract:The foreseen growing role of outsourced machine learning services is raising concerns about the privacy of user data. Several technical solutions are being proposed to address the issue. Hardware security modules in cloud data centres appear limited to enterprise customers due to their complexity, while general multi-party computation techniques require a large number of message exchanges. This paper proposes a variety of protocols for privacy-preserving regression and classification that (i) only require additively homomorphic encryption algorithms, (ii) limit interactions to a mere request and response, and (iii) that can be used directly for important machine-learning algorithms such as logistic regression and SVM classification. The basic protocols are then extended and applied to feed-forward neural networks.
Abstract:Matrix factorization is a popular method to build a recommender system. In such a system, existing users and items are associated to a low-dimension vector called a profile. The profiles of a user and of an item can be combined (via inner product) to predict the rating that the user would get on the item. One important issue of such a system is the so-called cold-start problem: how to allow a user to learn her profile, so that she can then get accurate recommendations? While a profile can be computed if the user is willing to rate well-chosen items and/or provide supplemental attributes or demographics (such as gender), revealing this additional information is known to allow the analyst of the recommender system to infer many more personal sensitive information. We design a protocol to allow privacy-conscious users to benefit from matrix-factorization-based recommender systems while preserving their privacy. More precisely, our protocol enables a user to learn her profile, and from that to predict ratings without the user revealing any personal information. The protocol is secure in the standard model against semi-honest adversaries.