Abstract:Despite significant advancements in deep probabilistic models, learning low-dimensional discrete latent representations remains a challenging task. In this paper, we introduce a novel method that enhances variational inference in discrete latent variable models by leveraging Error Correcting Codes (ECCs) to introduce redundancy in the latent representations. This redundancy is then exploited by the variational posterior to yield more accurate estimates, thereby narrowing the variational gap. Inspired by ECCs commonly used in digital communications and data storage, we demonstrate proof-of-concept using a Discrete Variational Autoencoder (DVAE) with binary latent variables and block repetition codes. We further extend this idea to a hierarchical structure based on polar codes, where certain latent bits are more robustly protected. Our method improves generation quality, data reconstruction, and uncertainty calibration compared to the uncoded DVAE, even when trained with tighter bounds such as the Importance Weighted Autoencoder (IWAE) objective. In particular, we demonstrate superior performance on MNIST, FMNIST, CIFAR10, and Tiny ImageNet datasets. The general approach of integrating ECCs into variational inference is compatible with existing techniques to boost variational inference, such as importance sampling or Hamiltonian Monte Carlo. We also outline the key properties ECCs must have to effectively enhance discrete variational inference.
Abstract:Sleep constitutes a key indicator of human health, performance, and quality of life. Sleep deprivation has long been related to the onset, development, and worsening of several mental and metabolic disorders, constituting an essential marker for preventing, evaluating, and treating different health conditions. Sleep Activity Recognition methods can provide indicators to assess, monitor, and characterize subjects' sleep-wake cycles and detect behavioral changes. In this work, we propose a general method that continuously operates on passively sensed data from smartphones to characterize sleep and identify significant sleep episodes. Thanks to their ubiquity, these devices constitute an excellent alternative data source to profile subjects' biorhythms in a continuous, objective, and non-invasive manner, in contrast to traditional sleep assessment methods that usually rely on intrusive and subjective procedures. A Heterogeneous Hidden Markov Model is used to model a discrete latent variable process associated with the Sleep Activity Recognition task in a self-supervised way. We validate our results against sleep metrics reported by tested wearables, proving the effectiveness of the proposed approach and advocating its use to assess sleep without more reliable sources.
Abstract:Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time, comprising a tool that helps clinicians supervise patients' evolution over time and enhance the associated treatments' outcomes. Frequently, sleep disturbances and mental health deterioration are closely related, as mental health condition worsening regularly entails shifts in the patients' circadian rhythms. Therefore, Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles and to detect behavioural changes among them. Moreover, mobile passively sensed data captured from smartphones, thanks to these devices' ubiquity, constitute an excellent alternative to profile patients' biorhythm. In this work, we aim to identify major sleep episodes based on passively sensed data. To do so, a Heterogeneous Hidden Markov Model is proposed to model a discrete latent variable process associated with the Sleep Activity Recognition task in a self-supervised way. We validate our results against sleep metrics reported by clinically tested wearables, proving the effectiveness of the proposed approach.