Abstract:Concept bottleneck models (CBMs) have emerged as critical tools in domains where interpretability is paramount. These models rely on predefined textual descriptions, referred to as concepts, to inform their decision-making process and offer more accurate reasoning. As a result, the selection of concepts used in the model is of utmost significance. This study proposes \underline{\textbf{C}}onceptual \underline{\textbf{L}}earning via \underline{\textbf{E}}mbedding \underline{\textbf{A}}pproximations for \underline{\textbf{R}}einforcing Interpretability and Transparency, abbreviated as CLEAR, a framework for constructing a CBM for image classification. Using score matching and Langevin sampling, we approximate the embedding of concepts within the latent space of a vision-language model (VLM) by learning the scores associated with the joint distribution of images and concepts. A concept selection process is then employed to optimize the similarity between the learned embeddings and the predefined ones. The derived bottleneck offers insights into the CBM's decision-making process, enabling more comprehensive interpretations. Our approach was evaluated through extensive experiments and achieved state-of-the-art performance on various benchmarks. The code for our experiments is available at https://github.com/clearProject/CLEAR/tree/main