Abstract:Large-scale overlapping problems are prevalent in practical engineering applications, and the optimization challenge is significantly amplified due to the existence of shared variables. Decomposition-based cooperative coevolution (CC) algorithms have demonstrated promising performance in addressing large-scale overlapping problems. However, current CC frameworks designed for overlapping problems rely on grouping methods for the identification of overlapping problem structures and the current grouping methods for large-scale overlapping problems fail to consider both accuracy and efficiency simultaneously. In this article, we propose a two-stage enhanced grouping method for large-scale overlapping problems, called OEDG, which achieves accurate grouping while significantly reducing computational resource consumption. In the first stage, OEDG employs a grouping method based on the finite differences principle to identify all subcomponents and shared variables. In the second stage, we propose two grouping refinement methods, called subcomponent union detection (SUD) and subcomponent detection (SD), to enhance and refine the grouping results. SUD examines the information of the subcomponents and shared variables obtained in the previous stage, and SD corrects inaccurate grouping results. To better verify the performance of the proposed OEDG, we propose a series of novel benchmarks that consider various properties of large-scale overlapping problems, including the topology structure, overlapping degree, and separability. Extensive experimental results demonstrate that OEDG is capable of accurately grouping different types of large-scale overlapping problems while consuming fewer computational resources. Finally, we empirically verify that the proposed OEDG can effectively improve the optimization performance of diverse large-scale overlapping problems.
Abstract:Cooperative co-evolution (CC) algorithms, based on the divide-and-conquer strategy, have emerged as the predominant approach to solving large-scale global optimization (LSGO) problems. The efficiency and accuracy of the grouping stage significantly impact the performance of the optimization process. While the general separability grouping (GSG) method has overcome the limitation of previous differential grouping (DG) methods by enabling the decomposition of non-additively separable functions, it suffers from high computational complexity. To address this challenge, this article proposes a composite separability grouping (CSG) method, seamlessly integrating DG and GSG into a problem decomposition framework to utilize the strengths of both approaches. CSG introduces a step-by-step decomposition framework that accurately decomposes various problem types using fewer computational resources. By sequentially identifying additively, multiplicatively and generally separable variables, CSG progressively groups non-separable variables by recursively considering the interactions between each non-separable variable and the formed non-separable groups. Furthermore, to enhance the efficiency and accuracy of CSG, we introduce two innovative methods: a multiplicatively separable variable detection method and a non-separable variable grouping method. These two methods are designed to effectively detect multiplicatively separable variables and efficiently group non-separable variables, respectively. Extensive experimental results demonstrate that CSG achieves more accurate variable grouping with lower computational complexity compared to GSG and state-of-the-art DG series designs.