LTCI
Abstract:While music remains a challenging domain for generative models like Transformers, a two-pronged approach has recently proved successful: inserting musically-relevant structural information into the positional encoding (PE) module and using kernel approximation techniques based on Random Fourier Features (RFF) to lower the computational cost from quadratic to linear. Yet, it is not clear how such RFF-based efficient PEs compare with those based on rotation matrices, such as Rotary Positional Encoding (RoPE). In this paper, we present a unified framework based on kernel methods to analyze both families of efficient PEs. We use this framework to develop a novel PE method called RoPEPool, capable of extracting causal relationships from temporal sequences. Using RFF-based PEs and rotation-based PEs, we demonstrate how seemingly disparate PEs can be jointly studied by considering the content-context interactions they induce. For empirical validation, we use a symbolic music generation task, namely, melody harmonization. We show that RoPEPool, combined with highly-informative structural priors, outperforms all methods.
Abstract:Music generated by deep learning methods often suffers from a lack of coherence and long-term organization. Yet, multi-scale hierarchical structure is a distinctive feature of music signals. To leverage this information, we propose a structure-informed positional encoding framework for music generation with Transformers. We design three variants in terms of absolute, relative and non-stationary positional information. We comprehensively test them on two symbolic music generation tasks: next-timestep prediction and accompaniment generation. As a comparison, we choose multiple baselines from the literature and demonstrate the merits of our methods using several musically-motivated evaluation metrics. In particular, our methods improve the melodic and structural consistency of the generated pieces.