Abstract:Autism Spectrum Disorder (ASD) can affect individuals at varying degrees of intensity, from challenges in overall health, communication, and sensory processing, and this often begins at a young age. Thus, it is critical for medical professionals to be able to accurately diagnose ASD in young children, but doing so is difficult. Deep learning can be responsibly leveraged to improve productivity in addressing this task. The availability of data, however, remains a considerable obstacle. Hence, in this work, we introduce the Video ASD dataset--a dataset that contains video frame convolutional and attention map feature data--to foster further progress in the task of ASD classification. The original videos showcase children reacting to chemo-sensory stimuli, among auditory, touch, and vision This dataset contains the features of the frames spanning 2,467 videos, for a total of approximately 1.4 million frames. Additionally, head pose angles are included to account for head movement noise, as well as full-sentence text labels for the taste and smell videos that describe how the facial expression changes before, immediately after, and long after interaction with the stimuli. In addition to providing features, we also test foundation models on this data to showcase how movement noise affects performance and the need for more data and more complex labels.
Abstract:The biomedical imaging world is notorious for working with small amounts of data, frustrating state-of-the-art efforts in the computer vision and deep learning worlds. With large datasets, it is easier to make progress we have seen from the natural image distribution. It is the same with microscopy videos of neuron cells moving in a culture. This problem presents several challenges as it can be difficult to grow and maintain the culture for days, and it is expensive to acquire the materials and equipment. In this work, we explore how to alleviate this data scarcity problem by synthesizing the videos. We, therefore, take the recent work of the video diffusion model to synthesize videos of cells from our training dataset. We then analyze the model's strengths and consistent shortcomings to guide us on improving video generation to be as high-quality as possible. To improve on such a task, we propose modifying the denoising function and adding motion information (dense optical flow) so that the model has more context regarding how video frames transition over time and how each pixel changes over time.