Abstract:We present a numerically robust, computationally efficient approach for non-I.I.D. data stream sampling in federated client systems, where resources are limited and labeled data for local model adaptation is sparse and expensive. The proposed method identifies relevant stream observations to optimize the underlying client model, given a local labeling budget, and performs instantaneous labeling decisions without relying on any memory buffering strategies. Our experiments show enhanced training batch diversity and an improved numerical robustness of the proposal compared to existing strategies over large-scale data streams, making our approach an effective and convenient solution in FL environments.
Abstract:With the advent of interconnected and sensor-equipped edge devices, Federated Learning (FL) has gained significant attention, enabling decentralized learning while maintaining data privacy. However, FL faces two challenges in real-world tasks: expensive data labeling and domain shift between source and target samples. In this paper, we introduce a privacy-preserving, resource-efficient FL concept for client adaptation in hardware-constrained environments. Our approach includes server model pre-training on source data and subsequent fine-tuning on target data via low-end clients. The local client adaptation process is streamlined by probabilistic mixing of instance-level feature statistics approximated from source and target domain data. The adapted parameters are transferred back to the central server and globally aggregated. Preliminary results indicate that our method reduces computational and transmission costs while maintaining competitive performance on downstream tasks.