Abstract:Future wireless systems are trending towards higher carrier frequencies that offer larger communication bandwidth but necessitate the use of large antenna arrays. Existing signal processing techniques for channel estimation do not scale well to this "high-dimensional" regime in terms of performance and pilot overhead. Meanwhile, training deep learning based approaches for channel estimation requires large labeled datasets mapping pilot measurements to clean channel realizations, which can only be generated offline using simulated channels. In this paper, we develop a novel unsupervised over-the-air (OTA) algorithm that utilizes noisy received pilot measurements to train a deep generative model to output beamspace MIMO channel realizations. Our approach leverages Generative Adversarial Networks (GAN), while using a conditional input to distinguish between Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) channel realizations. We also present a federated implementation of the OTA algorithm that distributes the GAN training over multiple users and greatly reduces the user side computation. We then formulate channel estimation from a limited number of pilot measurements as an inverse problem and reconstruct the channel by optimizing the input vector of the trained generative model. Our proposed approach significantly outperforms Orthogonal Matching Pursuit on both LOS and NLOS channel models, and EM-GM-AMP -- an Approximate Message Passing algorithm -- on LOS channel models, while achieving comparable performance on NLOS channel models in terms of the normalized channel reconstruction error. More importantly, our proposed framework has the potential to be trained online using real noisy pilot measurements, is not restricted to a specific channel model and can even be utilized for a federated OTA design of a dataset generator from noisy data.
Abstract:Integrated access and backhaul (IAB) facilitates cost-effective deployment of millimeter wave(mmWave) cellular networks through multihop self-backhauling. Full-duplex (FD) technology, particularly for mmWave systems, is a potential means to overcome latency and throughput challenges faced by IAB networks. We derive practical and tractable throughput and latency constraints using queueing theory and formulate a network utility maximization problem to evaluate both FD-IAB and half-duplex(HD)-IAB networks. We use this to characterize the network-level improvements seen when upgrading from conventional HD IAB nodes to FD ones by deriving closed-form expressions for (i) latency gain of FD-IAB over HD-IAB and (ii) the maximum number of hops that a HD- and FD-IAB network can support while satisfying latency and throughput targets. Extensive simulations illustrate that FD-IAB can facilitate reduced latency, higher throughput, deeper networks, and fairer service. Compared to HD-IAB,FD-IAB can improve throughput by 8x and reduce latency by 4x for a fourth-hop user. In fact, upgrading IAB nodes with FD capability can allow the network to support latency and throughput targets that its HD counterpart fundamentally cannot meet. The gains are more profound for users further from the donor and can be achieved even when residual self-interference is significantly above the noise floor.