Abstract:In this paper, we propose a novel framework for performance optimization in Internet of Things (IoT)-based next-generation wireless sensor networks. In particular, a computationally-convenient system is presented to combat two major research problems in sensor networks. First is the conventionally-tackled resource optimization problem which triggers the drainage of battery at a faster rate within a network. Such drainage promotes inefficient resource usage thereby causing sudden death of the network. The second main bottleneck for such networks is that of data degradation. This is because the nodes in such networks communicate via a wireless channel, where the inevitable presence of noise corrupts the data making it unsuitable for practical applications. Therefore, we present a layer-adaptive method via 3-tier communication mechanism to ensure the efficient use of resources. This is supported with a mathematical coverage model that deals with the formation of coverage holes. We also present a transform-domain based robust algorithm to effectively remove the unwanted components from the data. Our proposed framework offers a handy algorithm that enjoys desirable complexity for real-time applications as shown by the extensive simulation results.
Abstract:Principle Component Analysis PCA is a classical feature extraction and data representation technique widely used in pattern recognition. It is one of the most successful techniques in face recognition. But it has drawback of high computational especially for big size database. This paper conducts a study to optimize the time complexity of PCA (eigenfaces) that does not affects the recognition performance. The authors minimize the participated eigenvectors which consequently decreases the computational time. A comparison is done to compare the differences between the recognition time in the original algorithm and in the enhanced algorithm. The performance of the original and the enhanced proposed algorithm is tested on face94 face database. Experimental results show that the recognition time is reduced by 35% by applying our proposed enhanced algorithm. DET Curves are used to illustrate the experimental results.