Abstract:In this study, we examine how event data from campus management systems can be used to analyze the study paths of higher education students. The main goal is to offer valuable guidance for their study planning. We employ process and data mining techniques to explore the impact of sequences of taken courses on academic success. Through the use of decision tree models, we generate data-driven recommendations in the form of rules for study planning and compare them to the recommended study plan. The evaluation focuses on RWTH Aachen University computer science bachelor program students and demonstrates that the proposed course sequence features effectively explain academic performance measures. Furthermore, the findings suggest avenues for developing more adaptable study plans.
Abstract:Process mining is rapidly growing in the industry. Consequently, privacy concerns regarding sensitive and private information included in event data, used by process mining algorithms, are becoming increasingly relevant. State-of-the-art research mainly focuses on providing privacy guarantees, e.g., differential privacy, for trace variants that are used by the main process mining techniques, e.g., process discovery. However, privacy preservation techniques for releasing trace variants still do not fulfill all the requirements of industry-scale usage. Moreover, providing privacy guarantees when there exists a high rate of infrequent trace variants is still a challenge. In this paper, we introduce TraVaG as a new approach for releasing differentially private trace variants based on \text{Generative Adversarial Networks} (GANs) that provides industry-scale benefits and enhances the level of privacy guarantees when there exists a high ratio of infrequent variants. Moreover, TraVaG overcomes shortcomings of conventional privacy preservation techniques such as bounding the length of variants and introducing fake variants. Experimental results on real-life event data show that our approach outperforms state-of-the-art techniques in terms of privacy guarantees, plain data utility preservation, and result utility preservation.
Abstract:The premise of this paper is that compliance with Trustworthy AI governance best practices and regulatory frameworks is an inherently fragmented process spanning across diverse organizational units, external stakeholders, and systems of record, resulting in process uncertainties and in compliance gaps that may expose organizations to reputational and regulatory risks. Moreover, there are complexities associated with meeting the specific dimensions of Trustworthy AI best practices such as data governance, conformance testing, quality assurance of AI model behaviors, transparency, accountability, and confidentiality requirements. These processes involve multiple steps, hand-offs, re-works, and human-in-the-loop oversight. In this paper, we demonstrate that process mining can provide a useful framework for gaining fact-based visibility to AI compliance process execution, surfacing compliance bottlenecks, and providing for an automated approach to analyze, remediate and monitor uncertainty in AI regulatory compliance processes.