Abstract:Deploying Large Language Models (LLMs) on resource-constrained edge devices like the Raspberry Pi presents challenges in computational efficiency, power consumption, and response latency. This paper explores quantization-based optimization techniques to enable high-throughput, energy-efficient execution of LLMs on low-power embedded systems. Our approach leverages k-quantization, a Post-Training Quantization (PTQ) method designed for different bit-widths, enabling efficient 2-bit, 4-bit, 6-bit, and 8-bit weight quantization. Additionally, we employ ternary quantization using Quantization-Aware Training (QAT) for BitNet models, allowing for more effective adaptation to lower-bit representations while preserving accuracy. Our findings highlight the potential of quantized LLMs for real-time conversational AI on edge devices, paving the way for low-power, high-efficiency AI deployment in mobile and embedded applications. This study demonstrates that aggressive quantization strategies can significantly reduce energy consumption while maintaining inference quality, making LLMs practical for resource-limited environments.
Abstract:This paper explores the synergistic potential of neuromorphic and edge computing to create a versatile machine learning (ML) system tailored for processing data captured by dynamic vision sensors. We construct and train hybrid models, blending spiking neural networks (SNNs) and artificial neural networks (ANNs) using PyTorch and Lava frameworks. Our hybrid architecture integrates an SNN for temporal feature extraction and an ANN for classification. We delve into the challenges of deploying such hybrid structures on hardware. Specifically, we deploy individual components on Intel's Neuromorphic Processor Loihi (for SNN) and Jetson Nano (for ANN). We also propose an accumulator circuit to transfer data from the spiking to the non-spiking domain. Furthermore, we conduct comprehensive performance analyses of hybrid SNN-ANN models on a heterogeneous system of neuromorphic and edge AI hardware, evaluating accuracy, latency, power, and energy consumption. Our findings demonstrate that the hybrid spiking networks surpass the baseline ANN model across all metrics and outperform the baseline SNN model in accuracy and latency.