Abstract:Supervised machine learning classifiers often encounter challenges related to performance, accuracy, and overfitting. This paper introduces the Artificial Liver Classifier (ALC), a novel supervised learning classifier inspired by the human liver's detoxification function. The ALC is characterized by its simplicity, speed, hyperparameters-free, ability to reduce overfitting, and effectiveness in addressing multi-classification problems through straightforward mathematical operations. To optimize the ALC's parameters, an improved FOX optimization algorithm (IFOX) is employed as the training method. The proposed ALC was evaluated on five benchmark machine learning datasets: Iris Flower, Breast Cancer Wisconsin, Wine, Voice Gender, and MNIST. The results demonstrated competitive performance, with the ALC achieving 100% accuracy on the Iris dataset, surpassing logistic regression, multilayer perceptron, and support vector machine. Similarly, on the Breast Cancer dataset, it achieved 99.12% accuracy, outperforming XGBoost and logistic regression. Across all datasets, the ALC consistently exhibited lower overfitting gaps and loss compared to conventional classifiers. These findings highlight the potential of leveraging biological process simulations to develop efficient machine learning models and open new avenues for innovation in the field.
Abstract:Artificial neural networks play a crucial role in machine learning and there is a need to improve their performance. This paper presents FOXANN, a novel classification model that combines the recently developed Fox optimizer with ANN to solve ML problems. Fox optimizer replaces the backpropagation algorithm in ANN; optimizes synaptic weights; and achieves high classification accuracy with a minimum loss, improved model generalization, and interpretability. The performance of FOXANN is evaluated on three standard datasets: Iris Flower, Breast Cancer Wisconsin, and Wine. The results presented in this paper are derived from 100 epochs using 10-fold cross-validation, ensuring that all dataset samples are involved in both the training and validation stages. Moreover, the results show that FOXANN outperforms traditional ANN and logistic regression methods as well as other models proposed in the literature such as ABC-ANN, ABC-MNN, CROANN, and PSO-DNN, achieving a higher accuracy of 0.9969 and a lower validation loss of 0.0028. These results demonstrate that FOXANN is more effective than traditional methods and other proposed models across standard datasets. Thus, FOXANN effectively addresses the challenges in ML algorithms and improves classification performance.