Abstract:Predicting future trajectories of surrounding vehicles heavily relies on what contextual information is given to a motion prediction model. The context itself can be static (lanes, regulatory elements, etc) or dynamic (traffic participants). This paper presents a lane graph-based motion prediction model that first predicts graph-based goal proposals and later fuses them with cross attention over multiple contextual elements. We follow the famous encoder-interactor-decoder architecture where the encoder encodes scene context using lightweight Gated Recurrent Units, the interactor applies cross-context attention over encoded scene features and graph goal proposals, and the decoder regresses multimodal trajectories via Laplacian Mixture Density Network from the aggregated encodings. Using cross-attention over graph-based goal proposals gives robust trajectory estimates since the model learns to attend to future goal-relevant scene elements for the intended agent. We evaluate our work on nuScenes motion prediction dataset, achieving state-of-the-art results.