Abstract:The usage of drones has tremendously increased in different sectors spanning from military to industrial applications. Despite all the benefits they offer, their misuse can lead to mishaps, and tackling them becomes more challenging particularly at night due to their small size and low visibility conditions. To overcome those limitations and improve the detection accuracy at night, we propose an object detector called Ghost Auto Anchor Network (GAANet) for infrared (IR) images. The detector uses a YOLOv5 core to address challenges in object detection for IR images, such as poor accuracy and a high false alarm rate caused by extended altitudes, poor lighting, and low image resolution. To improve performance, we implemented auto anchor calculation, modified the conventional convolution block to ghost-convolution, adjusted the input channel size, and used the AdamW optimizer. To enhance the precision of multiscale tiny object recognition, we also introduced an additional extra-small object feature extractor and detector. Experimental results in a custom IR dataset with multiple classes (birds, drones, planes, and helicopters) demonstrate that GAANet shows improvement compared to state-of-the-art detectors. In comparison to GhostNet-YOLOv5, GAANet has higher overall mean average precision (mAP@50), recall, and precision around 2.5\%, 2.3\%, and 1.4\%, respectively. The dataset and code for this paper are available as open source at https://github.com/ZeeshanKaleem/GhostAutoAnchorNet.
Abstract:Technological advancements have normalized the usage of unmanned aerial vehicles (UAVs) in every sector, spanning from military to commercial but they also pose serious security concerns due to their enhanced functionalities and easy access to private and highly secured areas. Several instances related to UAVs have raised security concerns, leading to UAV detection research studies. Visual techniques are widely adopted for UAV detection, but they perform poorly at night, in complex backgrounds, and in adverse weather conditions. Therefore, a robust night vision-based drone detection system is required to that could efficiently tackle this problem. Infrared cameras are increasingly used for nighttime surveillance due to their wide applications in night vision equipment. This paper uses a deep learning-based TinyFeatureNet (TF-Net), which is an improved version of YOLOv5s, to accurately detect UAVs during the night using infrared (IR) images. In the proposed TF-Net, we introduce architectural changes in the neck and backbone of the YOLOv5s. We also simulated four different YOLOv5 models (s,m,n,l) and proposed TF-Net for a fair comparison. The results showed better performance for the proposed TF-Net in terms of precision, IoU, GFLOPS, model size, and FPS compared to the YOLOv5s. TF-Net yielded the best results with 95.7\% precision, 84\% mAp, and 44.8\% $IoU$.