7DLabs
Abstract:We introduce Synscapes -- a synthetic dataset for street scene parsing created using photorealistic rendering techniques, and show state-of-the-art results for training and validation as well as new types of analysis. We study the behavior of networks trained on real data when performing inference on synthetic data: a key factor in determining the equivalence of simulation environments. We also compare the behavior of networks trained on synthetic data and evaluated on real-world data. Additionally, by analyzing pre-trained, existing segmentation and detection models, we illustrate how uncorrelated images along with a detailed set of annotations open up new avenues for analysis of computer vision systems, providing fine-grain information about how a model's performance changes according to factors such as distance, occlusion and relative object orientation.
Abstract:We present an overview and evaluation of a new, systematic approach for generation of highly realistic, annotated synthetic data for training of deep neural networks in computer vision tasks. The main contribution is a procedural world modeling approach enabling high variability coupled with physically accurate image synthesis, and is a departure from the hand-modeled virtual worlds and approximate image synthesis methods used in real-time applications. The benefits of our approach include flexible, physically accurate and scalable image synthesis, implicit wide coverage of classes and features, and complete data introspection for annotations, which all contribute to quality and cost efficiency. To evaluate our approach and the efficacy of the resulting data, we use semantic segmentation for autonomous vehicles and robotic navigation as the main application, and we train multiple deep learning architectures using synthetic data with and without fine tuning on organic (i.e. real-world) data. The evaluation shows that our approach improves the neural network's performance and that even modest implementation efforts produce state-of-the-art results.