Abstract:This paper examines how Large Language Models (LLMs) reproduce societal norms, particularly heterocisnormativity, and how these norms translate into measurable biases in their text generations. We investigate whether explicit information about a subject's gender or sexuality influences LLM responses across three subject categories: queer-marked, non-queer-marked, and the normalized "unmarked" category. Representational imbalances are operationalized as measurable differences in English sentence completions across four dimensions: sentiment, regard, toxicity, and prediction diversity. Our findings show that Masked Language Models (MLMs) produce the least favorable sentiment, higher toxicity, and more negative regard for queer-marked subjects. Autoregressive Language Models (ARLMs) partially mitigate these patterns, while closed-access ARLMs tend to produce more harmful outputs for unmarked subjects. Results suggest that LLMs reproduce normative social assumptions, though the form and degree of bias depend strongly on specific model characteristics, which may redistribute, but not eliminate, representational harms.
Abstract:With the increasing role of Natural Language Processing (NLP) in various applications, challenges concerning bias and stereotype perpetuation are accentuated, which often leads to hate speech and harm. Despite existing studies on sexism and misogyny, issues like homophobia and transphobia remain underexplored and often adopt binary perspectives, putting the safety of LGBTQIA+ individuals at high risk in online spaces. In this paper, we assess the potential harm caused by sentence completions generated by English large language models (LLMs) concerning LGBTQIA+ individuals. This is achieved using QueerBench, our new assessment framework, which employs a template-based approach and a Masked Language Modeling (MLM) task. The analysis indicates that large language models tend to exhibit discriminatory behaviour more frequently towards individuals within the LGBTQIA+ community, reaching a difference gap of 7.2% in the QueerBench score of harmfulness.