Abstract:Spanning over two decades, the study of qubits in semiconductors for quantum computing has yielded significant breakthroughs. However, the development of large-scale semiconductor quantum circuits is still limited by challenges in efficiently tuning and operating these circuits. Identifying optimal operating conditions for these qubits is complex, involving the exploration of vast parameter spaces. This presents a real 'needle in the haystack' problem, which, until now, has resisted complete automation due to device variability and fabrication imperfections. In this study, we present the first fully autonomous tuning of a semiconductor qubit, from a grounded device to Rabi oscillations, a clear indication of successful qubit operation. We demonstrate this automation, achieved without human intervention, in a Ge/Si core/shell nanowire device. Our approach integrates deep learning, Bayesian optimization, and computer vision techniques. We expect this automation algorithm to apply to a wide range of semiconductor qubit devices, allowing for statistical studies of qubit quality metrics. As a demonstration of the potential of full automation, we characterise how the Rabi frequency and g-factor depend on barrier gate voltages for one of the qubits found by the algorithm. Twenty years after the initial demonstrations of spin qubit operation, this significant advancement is poised to finally catalyze the operation of large, previously unexplored quantum circuits.
Abstract:Bias triangles represent features in stability diagrams of Quantum Dot (QD) devices, whose occurrence and property analysis are crucial indicators for spin physics. Nevertheless, challenges associated with quality and availability of data as well as the subtlety of physical phenomena of interest have hindered an automatic and bespoke analysis framework, often still relying (in part) on human labelling and verification. We introduce a feature extraction framework for bias triangles, built from unsupervised, segmentation-based computer vision methods, which facilitates the direct identification and quantification of physical properties of the former. Thereby, the need for human input or large training datasets to inform supervised learning approaches is circumvented, while additionally enabling the automation of pixelwise shape and feature labeling. In particular, we demonstrate that Pauli Spin Blockade (PSB) detection can be conducted effectively, efficiently and without any training data as a direct result of this approach.
Abstract:Graphs naturally lend themselves to model the complexities of Hyperspectral Image (HSI) data as well as to serve as semi-supervised classifiers by propagating given labels among nearest neighbours. In this work, we present a novel framework for the classification of HSI data in light of a very limited amount of labelled data, inspired by multi-view graph learning and graph signal processing. Given an a priori superpixel-segmented hyperspectral image, we seek a robust and efficient graph construction and label propagation method to conduct semi-supervised learning (SSL). Since the graph is paramount to the success of the subsequent classification task, particularly in light of the intrinsic complexity of HSI data, we consider the problem of finding the optimal graph to model such data. Our contribution is two-fold: firstly, we propose a multi-stage edge-efficient semi-supervised graph learning framework for HSI data which exploits given label information through pseudo-label features embedded in the graph construction. Secondly, we examine and enhance the contribution of multiple superpixel features embedded in the graph on the basis of pseudo-labels in an extension of the previous framework, which is less reliant on excessive parameter tuning. Ultimately, we demonstrate the superiority of our approaches in comparison with state-of-the-art methods through extensive numerical experiments.