Abstract:Arrays of gate-defined semiconductor quantum dots are among the leading candidates for building scalable quantum processors. High-fidelity initialization, control, and readout of spin qubit registers require exquisite and targeted control over key Hamiltonian parameters that define the electrostatic environment. However, due to the tight gate pitch, capacitive crosstalk between gates hinders independent tuning of chemical potentials and interdot couplings. While virtual gates offer a practical solution, determining all the required cross-capacitance matrices accurately and efficiently in large quantum dot registers is an open challenge. Here, we establish a Modular Automated Virtualization System (MAViS) -- a general and modular framework for autonomously constructing a complete stack of multi-layer virtual gates in real time. Our method employs machine learning techniques to rapidly extract features from two-dimensional charge stability diagrams. We then utilize computer vision and regression models to self-consistently determine all relative capacitive couplings necessary for virtualizing plunger and barrier gates in both low- and high-tunnel-coupling regimes. Using MAViS, we successfully demonstrate accurate virtualization of a dense two-dimensional array comprising ten quantum dots defined in a high-quality Ge/SiGe heterostructure. Our work offers an elegant and practical solution for the efficient control of large-scale semiconductor quantum dot systems.
Abstract:Spanning over two decades, the study of qubits in semiconductors for quantum computing has yielded significant breakthroughs. However, the development of large-scale semiconductor quantum circuits is still limited by challenges in efficiently tuning and operating these circuits. Identifying optimal operating conditions for these qubits is complex, involving the exploration of vast parameter spaces. This presents a real 'needle in the haystack' problem, which, until now, has resisted complete automation due to device variability and fabrication imperfections. In this study, we present the first fully autonomous tuning of a semiconductor qubit, from a grounded device to Rabi oscillations, a clear indication of successful qubit operation. We demonstrate this automation, achieved without human intervention, in a Ge/Si core/shell nanowire device. Our approach integrates deep learning, Bayesian optimization, and computer vision techniques. We expect this automation algorithm to apply to a wide range of semiconductor qubit devices, allowing for statistical studies of qubit quality metrics. As a demonstration of the potential of full automation, we characterise how the Rabi frequency and g-factor depend on barrier gate voltages for one of the qubits found by the algorithm. Twenty years after the initial demonstrations of spin qubit operation, this significant advancement is poised to finally catalyze the operation of large, previously unexplored quantum circuits.