Abstract:Understanding animal vocalizations through multi-source data fusion is crucial for assessing emotional states and enhancing animal welfare in precision livestock farming. This study aims to decode dairy cow contact calls by employing multi-modal data fusion techniques, integrating transcription, semantic analysis, contextual and emotional assessment, and acoustic feature extraction. We utilized the Natural Language Processing model to transcribe audio recordings of cow vocalizations into written form. By fusing multiple acoustic features frequency, duration, and intensity with transcribed textual data, we developed a comprehensive representation of cow vocalizations. Utilizing data fusion within a custom-developed ontology, we categorized vocalizations into high frequency calls associated with distress or arousal, and low frequency calls linked to contentment or calmness. Analyzing the fused multi dimensional data, we identified anxiety related features indicative of emotional distress, including specific frequency measurements and sound spectrum results. Assessing the sentiment and acoustic features of vocalizations from 20 individual cows allowed us to determine differences in calling patterns and emotional states. Employing advanced machine learning algorithms, Random Forest, Support Vector Machine, and Recurrent Neural Networks, we effectively processed and fused multi-source data to classify cow vocalizations. These models were optimized to handle computational demands and data quality challenges inherent in practical farm environments. Our findings demonstrate the effectiveness of multi-source data fusion and intelligent processing techniques in animal welfare monitoring. This study represents a significant advancement in animal welfare assessment, highlighting the role of innovative fusion technologies in understanding and improving the emotional wellbeing of dairy cows.
Abstract:There is a critical need to develop and validate non-invasive animal-based indicators of affective states in livestock species, in order to integrate them into on-farm assessment protocols, potentially via the use of precision livestock farming (PLF) tools. One such promising approach is the use of vocal indicators. The acoustic structure of vocalizations and their functions were extensively studied in important livestock species, such as pigs, horses, poultry and goats, yet cattle remain understudied in this context to date. Cows were shown to produce two types vocalizations: low-frequency calls (LF), produced with the mouth closed, or partially closed, for close distance contacts and open mouth emitted high-frequency calls (HF), produced for long distance communication, with the latter considered to be largely associated with negative affective states. Moreover, cattle vocalizations were shown to contain information on individuality across a wide range of contexts, both negative and positive. Nowadays, dairy cows are facing a series of negative challenges and stressors in a typical production cycle, making vocalizations during negative affective states of special interest for research. One contribution of this study is providing the largest to date pre-processed (clean from noises) dataset of lactating adult multiparous dairy cows during negative affective states induced by visual isolation challenges. Here we present two computational frameworks - deep learning based and explainable machine learning based, to classify high and low-frequency cattle calls, and individual cow voice recognition. Our models in these two frameworks reached 87.2% and 89.4% accuracy for LF and HF classification, with 68.9% and 72.5% accuracy rates for the cow individual identification, respectively.