Abstract:Generative dynamic texture models (GDTMs) are widely used for dynamic texture (DT) segmentation in the video sequences. GDTMs represent DTs as a set of linear dynamical systems (LDSs). A major limitation of these models concerns the automatic selection of a proper number of DTs. Dirichlet process mixture (DPM) models which have appeared recently as the cornerstone of the non-parametric Bayesian statistics, is an optimistic candidate toward resolving this issue. Under this motivation to resolve the aforementioned drawback, we propose a novel non-parametric fully Bayesian approach for DT segmentation, formulated on the basis of a joint DPM and GDTM construction. This interaction causes the algorithm to overcome the problem of automatic segmentation properly. We derive the Variational Bayesian Expectation-Maximization (VBEM) inference for the proposed model. Moreover, in the E-step of inference, we apply Rauch-Tung-Striebel smoother (RTSS) algorithm on Variational Bayesian LDSs. Ultimately, experiments on different video sequences are performed. Experiment results indicate that the proposed algorithm outperforms the previous methods in efficiency and accuracy noticeably.
Abstract:Recently, there has been a considerable attention given to the motion detection problem due to the explosive growth of its applications in video analysis and surveillance systems. While the previous approaches can produce good results, an accurate detection of motion remains a challenging task due to the difficulties raised by illumination variations, occlusion, camouflage, burst physical motion, dynamic texture, and environmental changes such as those on climate changes, sunlight changes during a day, etc. In this paper, we propose a novel per-pixel motion descriptor for both motion detection and dynamic texture segmentation which outperforms the current methods in the literature particularly in severe scenarios. The proposed descriptor is based on two complementary three-dimensional-discrete wavelet transform (3D-DWT) and three-dimensional wavelet leader. In this approach, a feature vector is extracted for each pixel by applying a novel three dimensional wavelet-based motion descriptor. Then, the extracted features are clustered by a clustering method such as well-known k-means algorithm or Gaussian Mixture Model (GMM). The experimental results demonstrate the effectiveness of our proposed method compared to the other motion detection approaches from the literature. The application of the proposed method and additional experimental results for the different datasets are available at (http://dspl.ce.sharif.edu/motiondetector.html).