Abstract:Object detection methods trained on a fixed set of known classes struggle to detect objects of unknown classes in the open-world setting. Current fixes involve adding approximate supervision with pseudo-labels corresponding to candidate locations of objects, typically obtained in a class-agnostic manner. While previous approaches mainly rely on the appearance of objects, we find that geometric cues improve unknown recall. Although additional supervision from pseudo-labels helps to detect unknown objects, it also introduces confusion for known classes. We observed a notable decline in the model's performance for detecting known objects in the presence of noisy pseudo-labels. Drawing inspiration from studies on human cognition, we propose to group known classes into superclasses. By identifying similarities between classes within a superclass, we can identify unknown classes through an odd-one-out scoring mechanism. Our experiments on open-world detection benchmarks demonstrate significant improvements in unknown recall, consistently across all tasks. Crucially, we achieve this without compromising known performance, thanks to better partitioning of the feature space with superclasses.
Abstract:Semantic segmentation methods typically perform per-pixel classification by assuming a fixed set of semantic categories. While they perform well on the known set, the network fails to learn the concept of objectness, which is necessary for identifying unknown objects. In this paper, we explore the potential of query-based mask classification for unknown object segmentation. We discover that object queries specialize in predicting a certain class and behave like one vs. all classifiers, allowing us to detect unknowns by finding regions that are ignored by all the queries. Based on a detailed analysis of the model's behavior, we propose a novel anomaly scoring function. We demonstrate that mask classification helps to preserve the objectness and the proposed scoring function eliminates irrelevant sources of uncertainty. Our method achieves consistent improvements in multiple benchmarks, even under high domain shift, without retraining or using outlier data. With modest supervision for outliers, we show that further improvements can be achieved without affecting the closed-set performance.