Abstract:Variational quantum circuits have arisen as an important method in quantum computing. A crucial step of it is parameter optimization, which is typically tackled through gradient-descent techniques. We advantageously explore instead the use of evolutionary algorithms for such optimization, specifically for time-series forecasting. We perform a comparison, for diverse instances of real-world data, between gradient-descent parameter optimization and covariant-matrix adaptation evolutionary strategy. We observe that gradient descent becomes permanently trapped in local minima that have been avoided by evolutionary algorithms in all tested datasets, reaching up to a six-fold decrease in prediction error. Finally, the combined use of evolutionary and gradient-based techniques is explored, aiming at retaining advantages of both. The results are particularly applicable in scenarios sensitive to gains in accuracy.
Abstract:Satellite image acquisition scheduling is a problem that is omnipresent in the earth observation field; its goal is to find the optimal subset of images to be taken during a given orbit pass under a set of constraints. This problem, which can be modeled via combinatorial optimization, has been dealt with many times by the artificial intelligence and operations research communities. However, despite its inherent interest, it has been scarcely studied through the quantum computing paradigm. Taking this situation as motivation, we present in this paper two QUBO formulations for the problem, using different approaches to handle the non-trivial constraints. We compare the formulations experimentally over 20 problem instances using three quantum annealers currently available from D-Wave, as well as one of its hybrid solvers. Fourteen of the tested instances have been obtained from the well-known SPOT5 benchmark, while the remaining six have been generated ad-hoc for this study. Our results show that the formulation and the ancilla handling technique is crucial to solve the problem successfully. Finally, we also provide practical guidelines on the size limits of problem instances that can be realistically solved on current quantum computers.