Abstract:Large Language Models (LLMs) exhibit exceptional abilities for causal analysis between concepts in numerous societally impactful domains, including medicine, science, and law. Recent research on LLM performance in various causal discovery and inference tasks has given rise to a new ladder in the classical three-stage framework of causality. In this paper, we advance the current research of LLM-driven causal discovery by proposing a novel framework that combines knowledge-based LLM causal analysis with data-driven causal structure learning. To make LLM more than a query tool and to leverage its power in discovering natural and new laws of causality, we integrate the valuable LLM expertise on existing causal mechanisms into statistical analysis of objective data to build a novel and practical baseline for causal structure learning. We introduce a universal set of prompts designed to extract causal graphs from given variables and assess the influence of LLM prior causality on recovering causal structures from data. We demonstrate the significant enhancement of LLM expertise on the quality of recovered causal structures from data, while also identifying critical challenges and issues, along with potential approaches to address them. As a pioneering study, this paper aims to emphasize the new frontier that LLMs are opening for classical causal discovery and inference, and to encourage the widespread adoption of LLM capabilities in data-driven causal analysis.