Abstract:Semantic segmentation is a critical technique for effective scene understanding. Traditional RGB-T semantic segmentation models often struggle to generalize across diverse scenarios due to their reliance on pretrained models and predefined categories. Recent advancements in Visual Language Models (VLMs) have facilitated a shift from closed-set to open-vocabulary semantic segmentation methods. However, these models face challenges in dealing with intricate scenes, primarily due to the heterogeneity between RGB and thermal modalities. To address this gap, we present Open-RGBT, a novel open-vocabulary RGB-T semantic segmentation model. Specifically, we obtain instance-level detection proposals by incorporating visual prompts to enhance category understanding. Additionally, we employ the CLIP model to assess image-text similarity, which helps correct semantic consistency and mitigates ambiguities in category identification. Empirical evaluations demonstrate that Open-RGBT achieves superior performance in diverse and challenging real-world scenarios, even in the wild, significantly advancing the field of RGB-T semantic segmentation.
Abstract:Image restoration is rather challenging in adverse weather conditions, especially when multiple degradations occur simultaneously. Blind image decomposition was proposed to tackle this issue, however, its effectiveness heavily relies on the accurate estimation of each component. Although diffusion-based models exhibit strong generative abilities in image restoration tasks, they may generate irrelevant contents when the degraded images are severely corrupted. To address these issues, we leverage physical constraints to guide the whole restoration process, where a mixed degradation model based on atmosphere scattering model is constructed. Then we formulate our Joint Conditional Diffusion Model (JCDM) by incorporating the degraded image and degradation mask to provide precise guidance. To achieve better color and detail recovery results, we further integrate a refinement network to reconstruct the restored image, where Uncertainty Estimation Block (UEB) is employed to enhance the features. Extensive experiments performed on both multi-weather and weather-specific datasets demonstrate the superiority of our method over state-of-the-art competing methods.