Abstract:Goal: This paper presents an algorithm for accurately estimating pelvis, thigh, and shank kinematics during walking using only three wearable inertial sensors. Methods: The algorithm makes novel use of a constrained Kalman filter (CKF). The algorithm iterates through the prediction (kinematic equation), measurement (pelvis position pseudo-measurements, zero velocity update, flat-floor assumption, and covariance limiter), and constraint update (formulation of hinged knee joints and ball-and-socket hip joints). Results: Evaluation of the algorithm using a Vicon-based sensor-to-segment calibration on nine participants ($7$ men and $2$ women, weight $63.0 \pm 6.8$ kg, height $1.70 \pm 0.06$ m, age $24.6 \pm 3.9$ years old), with no known gait or lower body biomechanical abnormalities, who walked within a $4 \times 4$ m$^2$ capture area shows that it can track motion relative to the mid-pelvis origin with mean position and orientation (no bias) root-mean-square error (RMSE) of $5.21 \pm 1.3$ cm and $16.1 \pm 3.2^\circ$, respectively. The sagittal knee and hip joint angle RMSEs (no bias) were $10.0 \pm 2.9^\circ$ and $9.9 \pm 3.2^\circ$, respectively, while the corresponding correlation coefficient (CC) values were $0.87 \pm 0.08$ and $0.74 \pm 0.12$. Conclusion: The CKF-based algorithm was able to track the 3D pose of the pelvis, thigh, and shanks using only three inertial sensors worn on the pelvis and shanks. Significance: Due to the Kalman-filter-based algorithm's low computation cost and the relative convenience of using only three wearable sensors, gait parameters can be computed in real-time and remotely for long-term gait monitoring. Furthermore, the system can be used to inform real-time gait assistive devices.
Abstract:This paper presents an algorithm that makes novel use of Lie group representation of position and orientation alongside a constrained extended Kalman filter (CEKF) for accurately estimating pelvis, thigh, and shank kinematics during walking using only three wearable inertial sensors. The algorithm iterates through the prediction update (kinematic equation), measurement update (pelvis height, zero velocity update, flat-floor assumption, and covariance limiter), and constraint update (formulation of hinged knee joints and ball-and-socket hip joints). Evaluation of the algorithm on nine healthy subjects who walked freely within a $4 \times 4$ m$^3$ room shows that it can track motion relative to the mid-pelvis origin with mean position and orientation root-mean-square error of $5.75 \pm 1.4$ cm and $19.8 \pm 5.2^\circ$, respectively. The sagittal knee and hip joint angle correlation coefficients were $0.88 \pm 0.1$ and $0.77 \pm 0.1$. This paper demonstrates an application of Lie group representation for inertial motion capture. Furthermore, the algorithm can compute gait parameters in real-time and, hence, can be used to inform gait assistive devices.