Abstract:This informal technical report details the geometric illustration of decision boundaries for ReLU units in a three layer fully connected neural network. The network is designed and trained to predict pixel intensity from an (x, y) input location. The Geometric Illustration of Neural Networks (GINN) tool was built to visualise and track the points at which ReLU units switch from being active to off (or vice versa) as the network undergoes training. Several phenomenon were observed and are discussed herein. This technical report is a supporting document to the blog post with online demos and is available at http://www.bayeswatch.com/2018/09/17/GINN/.
Abstract:In this brief technical report we introduce the CINIC-10 dataset as a plug-in extended alternative for CIFAR-10. It was compiled by combining CIFAR-10 with images selected and downsampled from the ImageNet database. We present the approach to compiling the dataset, illustrate the example images for different classes, give pixel distributions for each part of the repository, and give some standard benchmarks for well known models. Details for download, usage, and compilation can be found in the associated github repository.