Abstract:Accurate spatio-temporal information about the current situation is crucial for smart city applications such as modern routing algorithms. Often, this information describes the state of stationary resources, e.g. the availability of parking bays, charging stations or the amount of people waiting for a vehicle to pick them up near a given location. To exploit this kind of information, predicting future states of the monitored resources is often mandatory because a resource might change its state within the time until it is needed. To train an accurate predictive model, it is often not possible to obtain a continuous time series on the state of the resource. For example, the information might be collected from traveling agents visiting the resource with an irregular frequency. Thus, it is necessary to develop methods which work on sparse observations for training and prediction. In this paper, we propose time-inhomogeneous discrete Markov models to allow accurate prediction even when the frequency of observation is very rare. Our new model is able to blend recent observations with historic data and also provide useful probabilistic estimates for future states. Since resources availability in a city is typically time-dependent, our Markov model is time-inhomogeneous and cyclic within a predefined time interval. To train our model, we propose a modified Baum-Welch algorithm. Evaluations on real-world datasets of parking bay availability show that our new method indeed yields good results compared to methods being trained on complete data and non-cyclic variants.
Abstract:Finding an available on-street parking spot is a relevant problem of day-to-day life. In recent years, cities such as Melbourne and San Francisco deployed sensors that provide real-time information about the occupation of parking spots. Finding a free parking spot in such a smart environment can be modeled and solved as a Markov decision process (MDP). The problem has to consider uncertainty as available parking spots might not remain available until arrival due to other vehicles also claiming spots in the meantime. Knowing the parking intention of every vehicle in the environment would eliminate this uncertainty. Unfortunately, it does currently not seem realistic to have such data from all vehicles. In contrast, acquiring data from a subset of vehicles or a vehicle fleet appears feasible and has the potential to reduce uncertainty. In this paper, we examine the question of how useful sharing data within a vehicle fleet might be for the search times of particular drivers. We use fleet data to better estimate the availability of parking spots at arrival. Since optimal solutions for large scenarios are infeasible, we base our method on approximate solutions, which have been shown to perform well in single-agent settings. Our experiments are conducted on a simulation using real-world and synthetic data from the city of Melbourne. The results indicate that fleet data can significantly reduce search times for an available parking spot.