Abstract:Optimizing an unknown function under safety constraints is a central task in robotics, biomedical engineering, and many other disciplines, and increasingly safe Bayesian Optimization (BO) is used for this. Due to the safety critical nature of these applications, it is of utmost importance that theoretical safety guarantees for these algorithms translate into the real world. In this work, we investigate three safety-related issues of the popular class of SafeOpt-type algorithms. First, these algorithms critically rely on frequentist uncertainty bounds for Gaussian Process (GP) regression, but concrete implementations typically utilize heuristics that invalidate all safety guarantees. We provide a detailed analysis of this problem and introduce Real-\b{eta}-SafeOpt, a variant of the SafeOpt algorithm that leverages recent GP bounds and thus retains all theoretical guarantees. Second, we identify assuming an upper bound on the reproducing kernel Hilbert space (RKHS) norm of the target function, a key technical assumption in SafeOpt-like algorithms, as a central obstacle to real-world usage. To overcome this challenge, we introduce the Lipschitz-only Safe Bayesian Optimization (LoSBO) algorithm, which guarantees safety without an assumption on the RKHS bound, and empirically show that this algorithm is not only safe, but also exhibits superior performance compared to the state-of-the-art on several function classes. Third, SafeOpt and derived algorithms rely on a discrete search space, making them difficult to apply to higher-dimensional problems. To widen the applicability of these algorithms, we introduce Lipschitz-only GP-UCB (LoS-GP-UCB), a variant of LoSBO applicable to moderately high-dimensional problems, while retaining safety.
Abstract:Convolutional Neural Networks (CNN) have become a common choice for industrial quality control, as well as other critical applications in the Industry 4.0. When these CNNs behave in ways unexpected to human users or developers, severe consequences can arise, such as economic losses or an increased risk to human life. Concept extraction techniques can be applied to increase the reliability and transparency of CNNs through generating global explanations for trained neural network models. The decisive features of image datasets in quality control often depend on the feature's scale; for example, the size of a hole or an edge. However, existing concept extraction methods do not correctly represent scale, which leads to problems interpreting these models as we show herein. To address this issue, we introduce the Scale-Preserving Automatic Concept Extraction (SPACE) algorithm, as a state-of-the-art alternative concept extraction technique for CNNs, focused on industrial applications. SPACE is specifically designed to overcome the aforementioned problems by avoiding scale changes throughout the concept extraction process. SPACE proposes an approach based on square slices of input images, which are selected and then tiled before being clustered into concepts. Our method provides explanations of the models' decision-making process in the form of human-understandable concepts. We evaluate SPACE on three image classification datasets in the context of industrial quality control. Through experimental results, we illustrate how SPACE outperforms other methods and provides actionable insights on the decision mechanisms of CNNs. Finally, code for the implementation of SPACE is provided.