Abstract:Fractional statistical moments are utilized for various tasks of uncertainty quantification, including the estimation of probability distributions. However, an estimation of fractional statistical moments of costly mathematical models by statistical sampling is challenging since it is typically not possible to create a large experimental design due to limitations in computing capacity. This paper presents a novel approach for the analytical estimation of fractional moments, directly from polynomial chaos expansions. Specifically, the first four statistical moments obtained from the deterministic PCE coefficients are used for an estimation of arbitrary fractional moments via H\"{o}lder's inequality. The proposed approach is utilized for an estimation of statistical moments and probability distributions in three numerical examples of increasing complexity. Obtained results show that the proposed approach achieves a superior performance in estimating the distribution of the response, in comparison to a standard Latin hypercube sampling in the presented examples.
Abstract:We present a novel physics-constrained polynomial chaos expansion as a surrogate modeling method capable of performing both scientific machine learning (SciML) and uncertainty quantification (UQ) tasks. The proposed method possesses a unique capability: it seamlessly integrates SciML into UQ and vice versa, which allows it to quantify the uncertainties in SciML tasks effectively and leverage SciML for improved uncertainty assessment during UQ-related tasks. The proposed surrogate model can effectively incorporate a variety of physical constraints, such as governing partial differential equations (PDEs) with associated initial and boundary conditions constraints, inequality-type constraints (e.g., monotonicity, convexity, non-negativity, among others), and additional a priori information in the training process to supplement limited data. This ensures physically realistic predictions and significantly reduces the need for expensive computational model evaluations to train the surrogate model. Furthermore, the proposed method has a built-in uncertainty quantification (UQ) feature to efficiently estimate output uncertainties. To demonstrate the effectiveness of the proposed method, we apply it to a diverse set of problems, including linear/non-linear PDEs with deterministic and stochastic parameters, data-driven surrogate modeling of a complex physical system, and UQ of a stochastic system with parameters modeled as random fields.
Abstract:Surrogate modeling of costly mathematical models representing physical systems is challenging since it is typically not possible to create a large experimental design. Thus, it is beneficial to constrain the approximation to adhere to the known physics of the model. This paper presents a novel methodology for the construction of physics-informed polynomial chaos expansions (PCE) that combines the conventional experimental design with additional constraints from the physics of the model. Physical constraints investigated in this paper are represented by a set of differential equations and specified boundary conditions. A computationally efficient means for construction of physically constrained PCE is proposed and compared to standard sparse PCE. It is shown that the proposed algorithms lead to superior accuracy of the approximation and does not add significant computational burden. Although the main purpose of the proposed method lies in combining data and physical constraints, we show that physically constrained PCEs can be constructed from differential equations and boundary conditions alone without requiring evaluations of the original model. We further show that the constrained PCEs can be easily applied for uncertainty quantification through analytical post-processing of a reduced PCE filtering out the influence of all deterministic space-time variables. Several deterministic examples of increasing complexity are provided and the proposed method is applied for uncertainty quantification.
Abstract:The paper presents a novel methodology to build surrogate models of complicated functions by an active learning-based sequential decomposition of the input random space and construction of localized polynomial chaos expansions, referred to as domain adaptive localized polynomial chaos expansion (DAL-PCE). The approach utilizes sequential decomposition of the input random space into smaller sub-domains approximated by low-order polynomial expansions. This allows approximation of functions with strong nonlinearties, discontinuities, and/or singularities. Decomposition of the input random space and local approximations alleviates the Gibbs phenomenon for these types of problems and confines error to a very small vicinity near the non-linearity. The global behavior of the surrogate model is therefore significantly better than existing methods as shown in numerical examples. The whole process is driven by an active learning routine that uses the recently proposed $\Theta$ criterion to assess local variance contributions. The proposed approach balances both \emph{exploitation} of the surrogate model and \emph{exploration} of the input random space and thus leads to efficient and accurate approximation of the original mathematical model. The numerical results show the superiority of the DAL-PCE in comparison to (i) a single global polynomial chaos expansion and (ii) the recently proposed stochastic spectral embedding (SSE) method developed as an accurate surrogate model and which is based on a similar domain decomposition process. This method represents general framework upon which further extensions and refinements can be based, and which can be combined with any technique for non-intrusive polynomial chaos expansion construction.