Abstract:The non-uniform blur of atmospheric turbulence can be modeled as a superposition of linear motion blur kernels at a patch level. We propose a regression convolutional neural network (CNN) to predict angle and length of a linear motion blur kernel for varying sized patches. We analyze the robustness of the network for different patch sizes and the performance of the network in regions where the characteristics of the blur are transitioning. Alternating patch sizes per epoch in training, we find coefficient of determination scores across a range of patch sizes of $R^2>0.78$ for length and $R^2>0.94$ for angle prediction. We find that blur predictions in regions overlapping two blur characteristics transition between the two characteristics as overlap changes. These results validate the use of such a network for prediction of non-uniform blur characteristics at a patch level.
Abstract:Many deblurring and blur kernel estimation methods use MAP or classification deep learning techniques to sharpen an image and predict the blur kernel. We propose a regression approach using neural networks to predict the parameters of linear motion blur kernels. These kernels can be parameterized by its length of blur and the orientation of the blur.This paper will analyze the relationship between length and angle of linear motion blur. This analysis will help establish a foundation to using regression prediction in uniformed motion blur images.