Abstract:This paper introduces a "proof of concept" for a new approach to assistive robotics, integrating edge computing with Natural Language Processing (NLP) and computer vision to enhance the interaction between humans and robotic systems. Our "proof of concept" demonstrates the feasibility of using large language models (LLMs) and vision systems in tandem for interpreting and executing complex commands conveyed through natural language. This integration aims to improve the intuitiveness and accessibility of assistive robotic systems, making them more adaptable to the nuanced needs of users with disabilities. By leveraging the capabilities of edge computing, our system has the potential to minimize latency and support offline capability, enhancing the autonomy and responsiveness of assistive robots. Experimental results from our implementation on a robotic arm show promising outcomes in terms of accurate intent interpretation and object manipulation based on verbal commands. This research lays the groundwork for future developments in assistive robotics, focusing on creating highly responsive, user-centric systems that can significantly improve the quality of life for individuals with disabilities.
Abstract:This paper investigates the possibility of intuitive human-robot interaction through the application of Natural Language Processing (NLP) and Large Language Models (LLMs) in mobile robotics. We aim to explore the feasibility of using these technologies for edge-based deployment, where traditional cloud dependencies are eliminated. The study specifically contrasts the performance of GPT-4-Turbo, which requires cloud connectivity, with an offline-capable, quantized version of LLaMA 2 (LLaMA 2-7B.Q5 K M). Our results show that GPT-4-Turbo delivers superior performance in interpreting and executing complex commands accurately, whereas LLaMA 2 exhibits significant limitations in consistency and reliability of command execution. Communication between the control computer and the mobile robot is established via a Raspberry Pi Pico W, which wirelessly receives commands from the computer without internet dependency and transmits them through a wired connection to the robot's Arduino controller. This study highlights the potential and challenges of implementing LLMs and NLP at the edge, providing groundwork for future research into fully autonomous and network-independent robotic systems. For video demonstrations and source code, please refer to: https://tinyurl.com/RobocupSym2024.