Abstract:Structural Health Monitoring (SHM) ensures the safety and longevity of infrastructure by enabling timely damage detection. Vision-based crack detection, combined with UAVs, addresses the limitations of traditional sensor-based SHM methods but requires the deployment of efficient deep learning models on resource-constrained devices. This study evaluates two lightweight convolutional neural network models, MobileNetV1x0.25 and MobileNetV2x0.5, across TensorFlow, PyTorch, and Open Neural Network Exchange platforms using three quantization techniques: dynamic quantization, post-training quantization (PTQ), and quantization-aware training (QAT). Results show that QAT consistently achieves near-floating-point accuracy, such as an F1-score of 0.8376 for MBNV2x0.5 with Torch-QAT, while maintaining efficient resource usage. PTQ significantly reduces memory and energy consumption but suffers from accuracy loss, particularly in TensorFlow. Dynamic quantization preserves accuracy but faces deployment challenges on PyTorch. By leveraging QAT, this work enables real-time, low-power crack detection on UAVs, enhancing safety, scalability, and cost-efficiency in SHM applications, while providing insights into balancing accuracy and efficiency across different platforms for autonomous inspections.
Abstract:This paper compares machine learning approaches with different input data formats for the classification of acoustic emission (AE) signals. AE signals are a promising monitoring technique in many structural health monitoring applications. Machine learning has been demonstrated as an effective data analysis method, classifying different AE signals according to the damage mechanism they represent. These classifications can be performed based on the entire AE waveform or specific features that have been extracted from it. However, it is currently unknown which of these approaches is preferred. With the goal of model deployment on resource-constrained embedded Internet of Things (IoT) systems, this work evaluates and compares both approaches in terms of classification accuracy, memory requirement, processing time, and energy consumption. To accomplish this, features are extracted and carefully selected, neural network models are designed and optimized for each input data scenario, and the models are deployed on a low-power IoT node. The comparative analysis reveals that all models can achieve high classification accuracies of over 99\%, but that embedded feature extraction is computationally expensive. Consequently, models utilizing the raw AE signal as input have the fastest processing speed and thus the lowest energy consumption, which comes at the cost of a larger memory requirement.