Abstract:While convolutional neural networks (CNNs) excel at clean image classification, they struggle to classify images corrupted with different common corruptions, limiting their real-world applicability. Recent work has shown that incorporating a CNN front-end block that simulates some features of the primate primary visual cortex (V1) can improve overall model robustness. Here, we expand on this approach by introducing two novel biologically-inspired CNN model families that incorporate a new front-end block designed to simulate pre-cortical visual processing. RetinaNet, a hybrid architecture containing the novel front-end followed by a standard CNN back-end, shows a relative robustness improvement of 12.3% when compared to the standard model; and EVNet, which further adds a V1 block after the pre-cortical front-end, shows a relative gain of 18.5%. The improvement in robustness was observed for all the different corruption categories, though accompanied by a small decrease in clean image accuracy, and generalized to a different back-end architecture. These findings show that simulating multiple stages of early visual processing in CNN early layers provides cumulative benefits for model robustness.