Abstract:This proposal aims to develop more accurate federated learning (FL) methods with faster convergence properties and lower communication requirements, specifically for forecasting distributed energy resources (DER) such as renewables, energy storage, and loads in modern, low-carbon power grids. This will be achieved by (i) leveraging recently developed extensions of FL such as hierarchical and iterative clustering to improve performance with non-IID data, (ii) experimenting with different types of FL global models well-suited to time-series data, and (iii) incorporating domain-specific knowledge from power systems to build more general FL frameworks and architectures that can be applied to diverse types of DERs beyond just load forecasting, and with heterogeneous clients.
Abstract:We propose a comprehensive approach to increase the reliability and resilience of future power grids rich in distributed energy resources. Our distributed scheme combines federated learning-based attack detection with a local electricity market-based attack mitigation method. We validate the scheme by applying it to a real-world distribution grid rich in solar PV. Simulation results demonstrate that the approach is feasible and can successfully mitigate the grid impacts of cyber-physical attacks.