Abstract:Food recognition models often struggle to distinguish between seen and unseen samples, frequently misclassifying samples from unseen categories by assigning them an in-distribution (ID) label. This misclassification presents significant challenges when deploying these models in real-world applications, particularly within automatic dietary assessment systems, where incorrect labels can lead to cascading errors throughout the system. Ideally, such models should prompt the user when an unknown sample is encountered, allowing for corrective action. Given no prior research exploring food recognition in real-world settings, in this work we conduct an empirical analysis of various post-hoc out-of-distribution (OOD) detection methods for fine-grained food recognition. Our findings indicate that virtual logit matching (ViM) performed the best overall, likely due to its combination of logits and feature-space representations. Additionally, our work reinforces prior notions in the OOD domain, noting that models with higher ID accuracy performed better across the evaluated OOD detection methods. Furthermore, transformer-based architectures consistently outperformed convolution-based models in detecting OOD samples across various methods.
Abstract:Food recognition and nutritional apps are trending technologies that may revolutionise the way people with diabetes manage their diet. Such apps can monitor food intake as a digital diary and even employ artificial intelligence to assess the diet automatically. Although these apps offer a promising solution for managing diabetes, they are rarely used by patients. This chapter aims to provide an in-depth assessment of the current status of apps for food recognition and nutrition, to identify factors that may inhibit or facilitate their use, while it is accompanied by an outline of relevant research and development.