Abstract:Efficiently solving a vehicle routing problem (VRP) in a practical runtime is a critical challenge for delivery management companies. This paper explores both a theoretical and experimental connection between the Capacitated Vehicle Routing Problem (CVRP) and the Constrained Centroid-Based Clustering (CCBC). Reducing a CVRP to a CCBC is a synonym for a transition from an exponential to a polynomial complexity using commonly known algorithms for clustering, i.e K-means. At the beginning, we conduct an exploratory analysis to highlight the existence of such a relationship between the two problems through illustrative small-size examples and simultaneously deduce some mathematically-related formulations and properties. On a second level, the paper proposes a CCBC based approach endowed with some enhancements. The proposed framework consists of three stages. At the first step, a constrained centroid-based clustering algorithm generates feasible clusters of customers. This methodology incorporates three enhancement tools to achieve near-optimal clusters, namely: a multi-start procedure for initial centroids, a customer assignment metric, and a self-adjustment mechanism for choosing the number of clusters. At the second step, a traveling salesman problem (T SP) solver is used to optimize the order of customers within each cluster. Finally, we introduce a process relying on routes cutting and relinking procedure, which calls upon solving a linear and integer programming model to further improve the obtained routes. This step is inspired by the ruin & recreate algorithm. This approach is an extension of the classical cluster-first, route-second method and provides near-optimal solutions on well-known benchmark instances in terms of solution quality and computational runtime, offering a milestone in solving VRP.
Abstract:Motivated by the interpretability question in ML models as a crucial element for the successful deployment of AI systems, this paper focuses on rule extraction as a means for neural networks interpretability. Through a systematic literature review, different approaches for extracting rules from feedforward neural networks, an important block in deep learning models, are identified and explored. The findings reveal a range of methods developed for over two decades, mostly suitable for shallow neural networks, with recent developments to meet deep learning models' challenges. Rules offer a transparent and intuitive means of explaining neural networks, making this study a comprehensive introduction for researchers interested in the field. While the study specifically addresses feedforward networks with supervised learning and crisp rules, future work can extend to other network types, machine learning methods, and fuzzy rule extraction.
Abstract:Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_{2}$ emissions. Nonetheless, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid. While the majority of prior research has centered on employing purely time series-based methodologies for solar forecasting, only a limited number of studies have taken into account factors such as cloud cover or the surrounding physical context. In this paper, we put forth a deep learning architecture designed to harness spatio-temporal context using satellite data, to attain highly accurate \textit{day-ahead} time-series forecasting for any given station, with a particular emphasis on forecasting Global Horizontal Irradiance (GHI). We also suggest a methodology to extract a distribution for each time step prediction, which can serve as a very valuable measure of uncertainty attached to the forecast. When evaluating models, we propose a testing scheme in which we separate particularly difficult examples from easy ones, in order to capture the model performances in crucial situations, which in the case of this study are the days suffering from varying cloudy conditions. Furthermore, we present a new multi-modal dataset gathering satellite imagery over a large zone and time series for solar irradiance and other related physical variables from multiple geographically diverse solar stations. Our approach exhibits robust performance in solar irradiance forecasting, including zero-shot generalization tests at unobserved solar stations, and holds great promise in promoting the effective integration of solar power into the grid.
Abstract:The computational complexity of classical numerical methods for solving Partial Differential Equations (PDE) scales significantly as the resolution increases. As an important example, climate predictions require fine spatio-temporal resolutions to resolve all turbulent scales in the fluid simulations. This makes the task of accurately resolving these scales computationally out of reach even with modern supercomputers. As a result, current numerical modelers solve PDEs on grids that are too coarse (3km to 200km on each side), which hinders the accuracy and usefulness of the predictions. In this paper, we leverage the recent advances in Implicit Neural Representations (INR) to design a novel architecture that predicts the spatially continuous solution of a PDE given a spatial position query. By augmenting coordinate-based architectures with Graph Neural Networks (GNN), we enable zero-shot generalization to new non-uniform meshes and long-term predictions up to 250 frames ahead that are physically consistent. Our Mesh Agnostic Neural PDE Solver (MAgNet) is able to make accurate predictions across a variety of PDE simulation datasets and compares favorably with existing baselines. Moreover, MAgNet generalizes well to different meshes and resolutions up to four times those trained on.
Abstract:In this paper, we aim to illustrate different approaches we followed while developing a forecasting tool for highway traffic in Morocco. Two main approaches were adopted: Statistical Analysis as a step of data exploration and data wrangling. Therefore, a beta model is carried out for a better understanding of traffic behavior. Next, we moved to Machine Learning where we worked with a bunch of algorithms such as Random Forest, Artificial Neural Networks, Extra Trees, etc. yet, we were convinced that this field of study is still considered under state of the art models, so, we were also covering an application of Long Short-Term Memory Neural Networks.