Abstract:DNNs are one of the most widely used Deep Learning models. The matrix multiplication operations for DNNs incur significant computational costs and are bottlenecked by data movement between the memory and the processing elements. Many specialized accelerators have been proposed to optimize matrix multiplication operations. One popular idea is to use Processing-in-Memory where computations are performed by the memory storage element, thereby reducing the overhead of data movement between processor and memory. However, most PIM solutions rely either on novel memory technologies that have yet to mature or bit-serial computations which have significant performance overhead and scalability issues. In this work, an in-SRAM digital multiplier is proposed to take the best of both worlds, i.e. performing GEMM in memory but using only conventional SRAMs without the drawbacks of bit-serial computations. This allows the user to design systems with significant performance gains using existing technologies with little to no modifications. We first design a novel approximate bit-parallel multiplier that approximates multiplications with bitwise OR operations by leveraging multiple wordlines activation in the SRAM. We then propose DAISM - Digital Approximate In-SRAM Multiplier architecture, an accelerator for convolutional neural networks, based on our novel multiplier. This is followed by a comprehensive analysis of trade-offs in area, accuracy, and performance. We show that under similar design constraints, DAISM reduces energy consumption by 25\% and the number of cycles by 43\% compared to state-of-the-art baselines.