Abstract:In this work, a novel predictive maintenance system is presented and applied to the main components of wind turbines. The proposed model is based on machine learning and statistical process control tools applied to SCADA (Supervisory Control And Data Acquisition) data of critical components. The test campaign was divided into two stages: a first two years long offline test, and a second one year long real-time test. The offline test used historical faults from six wind farms located in Italy and Romania, corresponding to a total of 150 wind turbines and an overall installed nominal power of 283 MW. The results demonstrate outstanding capabilities of anomaly prediction up to 2 months before device unscheduled downtime. Furthermore, the real-time 12-months test confirms the ability of the proposed system to detect several anomalies, therefore allowing the operators to identify the root causes, and to schedule maintenance actions before reaching a catastrophic stage.
Abstract:The ability to accurately forecast power generation from renewable sources is nowadays recognised as a fundamental skill to improve the operation of power systems. Despite the general interest of the power community in this topic, it is not always simple to compare different forecasting methodologies, and infer the impact of single components in providing accurate predictions. In this paper we extensively compare simple forecasting methodologies with more sophisticated ones over 32 photovoltaic plants of different size and technology over a whole year. Also, we try to evaluate the impact of weather conditions and weather forecasts on the prediction of PV power generation.