Abstract:In satellite-to-ground communication, ensuring reliable and efficient connectivity poses significant challenges. The reconfigurable intelligent surface (RIS) offers a promising solution due to its ability to manipulate wireless propagation environments and thus enhance communication performance. In this paper, we propose a method for optimizing the placement of RISs on building facets to improve satellite-to-ground communication coverage. We model satellite-to-ground communication with RIS assistance, considering the actual positions of buildings and ground users. The theoretical lower bound on the coverage enhancement in satellite-to-ground communication through large-scale RIS deployment is derived. Then a novel optimization framework for RIS placement is formulated, and a parallel genetic algorithm is employed to solve the problem. Simulation results demonstrate the superior performance of the proposed RIS deployment strategy in enhancing satellite communication coverage probability for non-line-of-sight users. The proposed framework can be applied to various architectural distributions, such as rural areas, towns, and cities, by adjusting parameter settings.
Abstract:Future wireless communication systems are likely to adopt extremely large aperture arrays and millimeter-wave/sub-THz frequency bands to achieve higher throughput, lower latency, and higher energy efficiency. Conventional wireless systems predominantly operate in the far field (FF) of the radiation source of signals. As the array size increases and the carrier wavelength shrinks, however, the near field (NF) becomes non-negligible. Since the NF and FF differ in many aspects, it is essential to distinguish their corresponding regions. In this article, we first provide a comprehensive overview of the existing NF-FF boundaries, then introduce a novel NF-FF demarcation method based on effective degrees of freedom (EDoF) of the channel. Since EDoF is intimately related to spectral efficiency, the EDoF-based border is able to characterize key channel performance more accurately, as compared with the classic Rayleigh distance. Furthermore, we analyze the main features of the EDoF-based NF-FF boundary and provide insights into wireless system design.