Abstract:We introduce TurboGP, a Genetic Programming (GP) library fully written in Python and specifically designed for machine learning tasks. TurboGP implements modern features not available in other GP implementations, such as island and cellular population schemes, different types of genetic operations (migration, protected crossovers), online learning, among other features. TurboGP's most distinctive characteristic is its native support for different types of GP nodes to allow different abstraction levels, this makes TurboGP particularly useful for processing a wide variety of data sources.
Abstract:Genetic Programming (GP) is an evolutionary algorithm commonly used for machine learning tasks. In this paper we present a method that allows GP to transform the representation of a large-scale machine learning dataset into a more compact representation, by means of processing features from the original representation at individual level. We develop as a proof of concept of this method an autoencoder. We tested a preliminary version of our approach in a variety of well-known machine learning image datasets. We speculate that this method, used in an iterative manner, can produce results competitive with state-of-art deep neural networks.