Abstract:Reliable uncertainty estimation for time series prediction is critical in many fields, including physics, biology, and manufacturing. At Uber, probabilistic time series forecasting is used for robust prediction of number of trips during special events, driver incentive allocation, as well as real-time anomaly detection across millions of metrics. Classical time series models are often used in conjunction with a probabilistic formulation for uncertainty estimation. However, such models are hard to tune, scale, and add exogenous variables to. Motivated by the recent resurgence of Long Short Term Memory networks, we propose a novel end-to-end Bayesian deep model that provides time series prediction along with uncertainty estimation. We provide detailed experiments of the proposed solution on completed trips data, and successfully apply it to large-scale time series anomaly detection at Uber.
Abstract:We propose and analyze a generic method for community recovery in stochastic block models and degree corrected block models. This approach can exactly recover the hidden communities with high probability when the expected node degrees are of order $\log n$ or higher. Starting from a roughly correct community partition given by some conventional community recovery algorithm, this method refines the partition in a cross clustering step. Our results simplify and extend some of the previous work on exact community recovery, discovering the key role played by sample splitting. The proposed method is simple and can be implemented with many practical community recovery algorithms.