Abstract:Generative Artificial Intelligence (GenAI, generative AI) has rapidly become available as a tool in scientific research. To explore the use of generative AI in science, we conduct an empirical analysis using OpenAlex. Analyzing GenAI publications and other AI publications from 2017 to 2023, we profile growth patterns, the diffusion of GenAI publications across fields of study, and the geographical spread of scientific research on generative AI. We also investigate team size and international collaborations to explore whether GenAI, as an emerging scientific research area, shows different collaboration patterns compared to other AI technologies. The results indicate that generative AI has experienced rapid growth and increasing presence in scientific publications. The use of GenAI now extends beyond computer science to other scientific research domains. Over the study period, U.S. researchers contributed nearly two-fifths of global GenAI publications. The U.S. is followed by China, with several small and medium-sized advanced economies demonstrating relatively high levels of GenAI deployment in their research publications. Although scientific research overall is becoming increasingly specialized and collaborative, our results suggest that GenAI research groups tend to have slightly smaller team sizes than found in other AI fields. Furthermore, notwithstanding recent geopolitical tensions, GenAI research continues to exhibit levels of international collaboration comparable to other AI technologies.
Abstract:Motivation: Named Entity Recognition (NER) is a key task to support biomedical research. In Biomedical Named Entity Recognition (BioNER), obtaining high-quality expert annotated data is laborious and expensive, leading to the development of automatic approaches such as distant supervision. However, manually and automatically generated data often suffer from the unlabeled entity problem, whereby many entity annotations are missing, degrading the performance of full annotation NER models. Results: To address this problem, we systematically study the effectiveness of partial annotation learning methods for biomedical entity recognition over different simulated scenarios of missing entity annotations. Furthermore, we propose a TS-PubMedBERT-Partial-CRF partial annotation learning model. We harmonize 15 biomedical NER corpora encompassing five entity types to serve as a gold standard and compare against two commonly used partial annotation learning models, BiLSTM-Partial-CRF and EER-PubMedBERT, and the state-of-the-art full annotation learning BioNER model PubMedBERT tagger. Results show that partial annotation learning-based methods can effectively learn from biomedical corpora with missing entity annotations. Our proposed model outperforms alternatives and, specifically, the PubMedBERT tagger by 38% in F1-score under high missing entity rates. The recall of entity mentions in our model is also competitive with the upper bound on the fully annotated dataset.