Abstract:Kirkpatrick et al. [ALT 2019] and Fallat et al. [JMLR 2023] introduced non-clashing teaching and proved that it is the most efficient batch machine teaching model satisfying the collusion-avoidance benchmark established in the seminal work of Goldman and Mathias [COLT 1993]. Recently, (positive) non-clashing teaching was thoroughly studied for balls in graphs, yielding numerous algorithmic and combinatorial results. In particular, Chalopin et al. [COLT 2024] and Ganian et al. [ICLR 2025] gave an almost complete picture of the complexity landscape of the positive variant, showing that it is tractable only for restricted graph classes due to the non-trivial nature of the problem and concept class. In this work, we consider (positive) non-clashing teaching for closed neighborhoods in graphs. This concept class is not only extensively studied in various related contexts, but it also exhibits broad generality, as any finite binary concept class can be equivalently represented by a set of closed neighborhoods in a graph. In comparison to the works on balls in graphs, we provide improved algorithmic results, notably including FPT algorithms for more general classes of parameters, and we complement these results by deriving stronger lower bounds. Lastly, we obtain combinatorial upper bounds for wider classes of graphs.
Abstract:We study the classical and parameterized complexity of computing the positive non-clashing teaching dimension of a set of concepts, that is, the smallest number of examples per concept required to successfully teach an intelligent learner under the considered, previously established model. For any class of concepts, it is known that this problem can be effortlessly transferred to the setting of balls in a graph G. We establish (1) the NP-hardness of the problem even when restricted to instances with positive non-clashing teaching dimension k=2 and where all balls in the graph are present, (2) near-tight running time upper and lower bounds for the problem on general graphs, (3) fixed-parameter tractability when parameterized by the vertex integrity of G, and (4) a lower bound excluding fixed-parameter tractability when parameterized by the feedback vertex number and pathwidth of G, even when combined with k. Our results provide a nearly complete understanding of the complexity landscape of computing the positive non-clashing teaching dimension and answer open questions from the literature.