Abstract:Abductive explanations (AXp's) are widely used for understanding decisions of classifiers. Existing definitions are suitable when features are independent. However, we show that ignoring constraints when they exist between features may lead to an explosion in the number of redundant or superfluous AXp's. We propose three new types of explanations that take into account constraints and that can be generated from the whole feature space or from a sample (such as a dataset). They are based on a key notion of coverage of an explanation, the set of instances it explains. We show that coverage is powerful enough to discard redundant and superfluous AXp's. For each type, we analyse the complexity of finding an explanation and investigate its formal properties. The final result is a catalogue of different forms of AXp's with different complexities and different formal guarantees.
Abstract:We show that preferred, stable, complete, and grounded semantics satisfy attack removal monotonicity. This means that if an attack from b to a is removed, the status of a cannot worsen, e.g. if a was skeptically accepted, it cannot become rejected.
Abstract:Social abstract argumentation is a principled way to assign values to conflicting (weighted) arguments. In this note we discuss the important property of the uniqueness of the model.
Abstract:Argumentation is a promising model for reasoning with uncertain knowledge. The key concept of acceptability enables to differentiate arguments and counterarguments: The certainty of a proposition can then be evaluated through the most acceptable arguments for that proposition. In this paper, we investigate different complementary points of view: - an acceptability based on the existence of direct counterarguments, - an acceptability based on the existence of defenders. Pursuing previous work on preference-based argumentation principles, we enforce both points of view by taking into account preference orderings for comparing arguments. Our approach is illustrated in the context of reasoning with stratified knowldge bases.
Abstract:Humans currently use arguments for explaining choices which are already made, or for evaluating potential choices. Each potential choice has usually pros and cons of various strengths. In spite of the usefulness of arguments in a decision making process, there have been few formal proposals handling this idea if we except works by Fox and Parsons and by Bonet and Geffner. In this paper we propose a possibilistic logic framework where arguments are built from an uncertain knowledge base and a set of prioritized goals. The proposed approach can compute two kinds of decisions by distinguishing between pessimistic and optimistic attitudes. When the available, maybe uncertain, knowledge is consistent, as well as the set of prioritized goals (which have to be fulfilled as far as possible), the method for evaluating decisions on the basis of arguments agrees with the possibility theory-based approach to decision-making under uncertainty. Taking advantage of its relation with formal approaches to defeasible argumentation, the proposed framework can be generalized in case of partially inconsistent knowledge, or goal bases.
Abstract:Inferring from inconsistency and making decisions are two problems which have always been treated separately by researchers in Artificial Intelligence. Consequently, different models have been proposed for each category. Different argumentation systems [2, 7, 10, 11] have been developed for handling inconsistency in knowledge bases. Recently, other argumentation systems [3, 4, 8] have been defined for making decisions under uncertainty. The aim of this paper is to present a general argumentation framework in which both inferring from inconsistency and decision making are captured. The proposed framework can be used for decision under uncertainty, multiple criteria decision, rule-based decision and finally case-based decision. Moreover, works on classical decision suppose that the information about environment is coherent, and this no longer required by this general framework.