Abstract:In this work, the seasonal predictive capabilities of Neural Radiance Fields (NeRF) applied to satellite images are investigated. Focusing on the utilization of satellite data, the study explores how Sat-NeRF, a novel approach in computer vision, performs in predicting seasonal variations across different months. Through comprehensive analysis and visualization, the study examines the model's ability to capture and predict seasonal changes, highlighting specific challenges and strengths. Results showcase the impact of the sun direction on predictions, revealing nuanced details in seasonal transitions, such as snow cover, color accuracy, and texture representation in different landscapes. Given these results, we propose Planet-NeRF, an extension to Sat-NeRF capable of incorporating seasonal variability through a set of month embedding vectors. Comparative evaluations reveal that Planet-NeRF outperforms prior models in the case where seasonal changes are present. The extensive evaluation combined with the proposed method offers promising avenues for future research in this domain.
Abstract:Utilizing satellite imagery for wildfire detection presents substantial potential for practical applications. To advance the development of machine learning algorithms in this domain, our study introduces the \textit{Sen2Fire} dataset--a challenging satellite remote sensing dataset tailored for wildfire detection. This dataset is curated from Sentinel-2 multi-spectral data and Sentinel-5P aerosol product, comprising a total of 2466 image patches. Each patch has a size of 512$\times$512 pixels with 13 bands. Given the distinctive sensitivities of various wavebands to wildfire responses, our research focuses on optimizing wildfire detection by evaluating different wavebands and employing a combination of spectral indices, such as normalized burn ratio (NBR) and normalized difference vegetation index (NDVI). The results suggest that, in contrast to using all bands for wildfire detection, selecting specific band combinations yields superior performance. Additionally, our study underscores the positive impact of integrating Sentinel-5 aerosol data for wildfire detection. The code and dataset are available online (https://zenodo.org/records/10881058).