Abstract:Recent progress in deep learning and natural language processing has given rise to powerful models that are primarily trained on a cloze-like task and show some evidence of having access to substantial linguistic information, including some constructional knowledge. This groundbreaking discovery presents an exciting opportunity for a synergistic relationship between computational methods and Construction Grammar research. In this chapter, we explore three distinct approaches to the interplay between computational methods and Construction Grammar: (i) computational methods for text analysis, (ii) computational Construction Grammar, and (iii) deep learning models, with a particular focus on language models. We touch upon the first two approaches as a contextual foundation for the use of computational methods before providing an accessible, yet comprehensive overview of deep learning models, which also addresses reservations construction grammarians may have. Additionally, we delve into experiments that explore the emergence of constructionally relevant information within these models while also examining the aspects of Construction Grammar that may pose challenges for these models. This chapter aims to foster collaboration between researchers in the fields of natural language processing and Construction Grammar. By doing so, we hope to pave the way for new insights and advancements in both these fields.
Abstract:While lexico-semantic elements no doubt capture a large amount of linguistic information, it has been argued that they do not capture all information contained in text. This assumption is central to constructionist approaches to language which argue that language consists of constructions, learned pairings of a form and a function or meaning that are either frequent or have a meaning that cannot be predicted from its component parts. BERT's training objectives give it access to a tremendous amount of lexico-semantic information, and while BERTology has shown that BERT captures certain important linguistic dimensions, there have been no studies exploring the extent to which BERT might have access to constructional information. In this work we design several probes and conduct extensive experiments to answer this question. Our results allow us to conclude that BERT does indeed have access to a significant amount of information, much of which linguists typically call constructional information. The impact of this observation is potentially far-reaching as it provides insights into what deep learning methods learn from text, while also showing that information contained in constructions is redundantly encoded in lexico-semantics.