Abstract:We discuss the role of humans in algorithmic decision-making (ADM) for socially relevant problems from a technical and philosophical perspective. In particular, we illustrate tensions arising from diverse expectations, values, and constraints by and on the humans involved. To this end, we assume that a strategic decision-maker (SDM) introduces ADM to optimize strategic and societal goals while the algorithms' recommended actions are overseen by a practical decision-maker (PDM) - a specific human-in-the-loop - who makes the final decisions. While the PDM is typically assumed to be a corrective, it can counteract the realization of the SDM's desired goals and societal values not least because of a misalignment of these values and unmet information needs of the PDM. This has significant implications for the distribution of power between the stakeholders in ADM, their constraints, and information needs. In particular, we emphasize the overseeing PDM's role as a potential political and ethical decision maker, who acts expected to balance strategic, value-driven objectives and on-the-ground individual decisions and constraints. We demonstrate empirically, on a machine learning benchmark dataset, the significant impact an overseeing PDM's decisions can have even if the PDM is constrained to performing only a limited amount of actions differing from the algorithms' recommendations. To ensure that the SDM's intended values are realized, the PDM needs to be provided with appropriate information conveyed through tailored explanations and its role must be characterized clearly. Our findings emphasize the need for an in-depth discussion of the role and power of the PDM and challenge the often-taken view that just including a human-in-the-loop in ADM ensures the 'correct' and 'ethical' functioning of the system.
Abstract:Explanations of AI systems rarely address the information needs of people affected by algorithmic decision-making (ADM). This gap between conveyed information and information that matters to affected stakeholders can impede understanding and adherence to regulatory frameworks such as the AI Act. To address this gap, we present the "XAI Novice Question Bank": A catalog of affected stakeholders' information needs in two ADM use cases (employment prediction and health monitoring), covering the categories data, system context, system usage, and system specifications. Information needs were gathered in an interview study where participants received explanations in response to their inquiries. Participants further reported their understanding and decision confidence, showing that while confidence tended to increase after receiving explanations, participants also met understanding challenges, such as being unable to tell why their understanding felt incomplete. Explanations further influenced participants' perceptions of the systems' risks and benefits, which they confirmed or changed depending on the use case. When risks were perceived as high, participants expressed particular interest in explanations about intention, such as why and to what end a system was put in place. With this work, we aim to support the inclusion of affected stakeholders into explainability by contributing an overview of information and challenges relevant to them when deciding on the adoption of ADM systems. We close by summarizing our findings in a list of six key implications that inform the design of future explanations for affected stakeholder audiences.
Abstract:We argue that explanations for "algorithmic decision-making" (ADM) systems can profit by adopting practices that are already used in the learning sciences. We shortly introduce the importance of explaining ADM systems, give a brief overview of approaches drawing from other disciplines to improve explanations, and present the results of our qualitative task-based study incorporating the "six facets of understanding" framework. We close with questions guiding the discussion of how future studies can leverage an interdisciplinary approach.