Abstract:Patient-specific 3D spine models serve as a foundation for spinal treatment and surgery planning as well as analysis of loading conditions in biomechanical and biomedical research. Despite advancements in imaging technologies, the reconstruction of complete 3D spine models often faces challenges due to limitations in imaging modalities such as planar X-Ray and missing certain spinal structures, such as the spinal or transverse processes, in volumetric medical images and resulting segmentations. In this study, we present a novel accurate and time-efficient method to reconstruct complete 3D lumbar spine models from incomplete 3D vertebral bodies obtained from segmented magnetic resonance images (MRI). In our method, we use an affine transformation to align artificial vertebra models with patient-specific incomplete vertebrae. The transformation matrix is derived from vertebra landmarks, which are automatically detected on the vertebra endplates. The results of our evaluation demonstrate the high accuracy of the performed registration, achieving an average point-to-model distance of 1.95 mm. Additionally, in assessing the morphological properties of the vertebrae and intervertebral characteristics, our method demonstrated a mean absolute error (MAE) of 3.4{\deg} in the angles of functional spine units (FSUs), emphasizing its effectiveness in maintaining important spinal features throughout the transformation process of individual vertebrae. Our method achieves the registration of the entire lumbar spine, spanning segments L1 to L5, in just 0.14 seconds, showcasing its time-efficiency. Clinical relevance: the fast and accurate reconstruction of spinal models from incomplete input data such as segmentations provides a foundation for many applications in spine diagnostics, treatment planning, and the development of spinal healthcare solutions.
Abstract:Spinal ligaments are crucial elements in the complex biomechanical simulation models as they transfer forces on the bony structure, guide and limit movements and stabilize the spine. The spinal ligaments encompass seven major groups being responsible for maintaining functional interrelationships among the other spinal components. Determination of the ligament origin and insertion points on the 3D vertebrae models is an essential step in building accurate and complex spine biomechanical models. In our paper, we propose a pipeline that is able to detect 66 spinal ligament attachment points by using a step-wise approach. Our method incorporates a fast vertebra registration that strategically extracts only 15 3D points to compute the transformation, and edge detection for a precise projection of the registered ligaments onto any given patient-specific vertebra model. Our method shows high accuracy, particularly in identifying landmarks on the anterior part of the vertebra with an average distance of 2.24 mm for anterior longitudinal ligament and 1.26 mm for posterior longitudinal ligament landmarks. The landmark detection requires approximately 3.0 seconds per vertebra, providing a substantial improvement over existing methods. Clinical relevance: using the proposed method, the required landmarks that represent origin and insertion points for forces in the biomechanical spine models can be localized automatically in an accurate and time-efficient manner.
Abstract:Vertebral morphological measurements are important across various disciplines, including spinal biomechanics and clinical applications, pre- and post-operatively. These measurements also play a crucial role in anthropological longitudinal studies, where spinal metrics are repeatedly documented over extended periods. Traditionally, such measurements have been manually conducted, a process that is time-consuming. In this study, we introduce a novel, fully automated method for measuring vertebral morphology using 3D meshes of lumbar and thoracic spine models.Our experimental results demonstrate the method's capability to accurately measure low-resolution patient-specific vertebral meshes with mean absolute error (MAE) of 1.09 mm and those derived from artificially created lumbar spines, where the average MAE value was 0.7 mm. Our qualitative analysis indicates that measurements obtained using our method on 3D spine models can be accurately reprojected back onto the original medical images if these images are available.