Abstract:Backdoors and backbones of Boolean formulas are hidden structural properties. A natural goal, already in part realized, is that solver algorithms seek to obtain substantially better performance by exploiting these structures. However, the present paper is not intended to improve the performance of SAT solvers, but rather is a cautionary paper. In particular, the theme of this paper is that there is a potential chasm between the existence of such structures in the Boolean formula and being able to effectively exploit them. This does not mean that these structures are not useful to solvers. It does mean that one must be very careful not to assume that it is computationally easy to go from the existence of a structure to being able to get one's hands on it and/or being able to exploit the structure. For example, in this paper we show that, under the assumption that P $\neq$ NP, there are easily recognizable families of Boolean formulas with strong backdoors that are easy to find, yet for which it is hard (in fact, NP-complete) to determine whether the formulas are satisfiable. We also show that, also under the assumption P $\neq$ NP, there are easily recognizable sets of Boolean formulas for which it is hard (in fact, NP-complete) to determine whether they have a large backbone.
Abstract:We discuss the connection between computational social choice (comsoc) and computational complexity. We stress the work so far on, and urge continued focus on, two less-recognized aspects of this connection. Firstly, this is very much a two-way street: Everyone knows complexity classification is used in comsoc, but we also highlight benefits to complexity that have arisen from its use in comsoc. Secondly, more subtle, less-known complexity tools often can be very productively used in comsoc.
Abstract:A backbone of a boolean formula $F$ is a collection $S$ of its variables for which there is a unique partial assignment $a_S$ such that $F[a_S]$ is satisfiable [MZK+99,WGS03]. This paper studies the nontransparency of backbones. We show that, under the widely believed assumption that integer factoring is hard, there exist sets of boolean formulas that have obvious, nontrivial backbones yet finding the values, $a_S$, of those backbones is intractable. We also show that, under the same assumption, there exist sets of boolean formulas that obviously have large backbones yet producing such a backbone $S$ is intractable. Further, we show that if integer factoring is not merely worst-case hard but is frequently hard, as is widely believed, then the frequency of hardness in our two results is not too much less than that frequency.
Abstract:Heuristic approaches often do so well that they seem to pretty much always give the right answer. How close can heuristic algorithms get to always giving the right answer, without inducing seismic complexity-theoretic consequences? This article first discusses how a series of results by Berman, Buhrman, Hartmanis, Homer, Longpr\'{e}, Ogiwara, Sch\"{o}ening, and Watanabe, from the early 1970s through the early 1990s, explicitly or implicitly limited how well heuristic algorithms can do on NP-hard problems. In particular, many desirable levels of heuristic success cannot be obtained unless severe, highly unlikely complexity class collapses occur. Second, we survey work initiated by Goldreich and Wigderson, who showed how under plausible assumptions deterministic heuristics for randomized computation can achieve a very high frequency of correctness. Finally, we consider formal ways in which theory can help explain the effectiveness of heuristics that solve NP-hard problems in practice.